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SUMMARY. Familial aggregation studies are a common first step in the identification of
genetic determinants of disease. If aggregation is found, more refined genetic studies may
be undertaken. Complex ascertainment schemes are frequently employed to ensure that
the sample contains a sufficient number of families with multiple affected members, as
required to detect aggregation. For example, an eligibility criterion for a fmaily might
be that both the mother and daughter have disease. Adjustments must be made for
ascertainment to avoid bias. We propose adjusting for complex ascertainment schemes
through a joint model for the outcomes of disease and ascertainment. This approach

improves upon previous simplifying assumptions regarding the ascertainment process.

KeEY worDS: familial aggregation; ascertainment bias; quadratic exponential.



1. Introduction

The first step in the identification of hereditary diseases is frequently a familial aggregation
study. The goal of the study is to determine whether there is an increase in the risk of
disease associated with having relatives affected with disease. Familial aggregation refers
to the clustering of the disease within families, which may be due to genetic factors,
environmental factors, and/or infectious agents. Given the cost and complexity of finding
the genes responsible for a disease, this initial step is useful as it narrows the focus
for future genetic research. Some familial aggregation studies recruit subjects from a
registry and the recruitment can be considered population-based. Other studies recruit
subjects on the basis of their being at increased risk for the hereditary form of the disease.
Alternatively, recruitment can be based on the actual presence of disease so that there
are enough cases of disease to detect aggregation. Non-random sampling, such as in these

examples, is particularly useful if the hereditary form of the disease is rare.

There are several methods of non-random ascertainment. Single ascertainment in-
volves sampling individuals, called probands, on the basis of their disease status and
then obtaining a detailed history of disease in their relatives. It is possible that multiple
probands in a single family could be ascertained. For example, if probands are referred
by a physician, two family members could be referred by the same physician. More com-
plicated ascertainment schemes recruit probands based on certain criteria, such as their
disease status, and then recruit family members based on the same or different disease
criteria. For example, a study may identify affected individuals through physician refer-

rals, and additionally require that at least two first degree relatives are also affected. We



refer to the participation criteria as the ascertainment event.

Analysis of study designs with non-random sampling must account for the ascertain-
ment in order to avoid bias. This bias could potentially translate into a spurious finding
of familial aggregation. Consider a study design in which families are sampled if they
have at least two affected members. If the naive approach is taken and ascertainment
is completely ignored, even in the absence of true familial aggregation, there will appear
to be a familial association solely due to the study design. Thompson (1993) provides
a thorough discussion of non-random sampling, ascertainment bias and several classical

approaches to adjusting for ascertainment.

In the case of single ascertainment, a simple approach is to condition the likelihood
contribution of each family on the disease outcome of its proband (e.g., Betensky and
Whittemore, 1996 and Hudson, Laird and Betensky, 2001). If there are multiple probands,
one approach is to condition on the disease outcome of the first proband recruited to
the study. We refer to this as the first proband approach. Tosteson, Rosner and
Redline (1991) extended this and adjusted for the ascertainment of all probands in a
family. They treat ascertainment status as random and condition on the ascertainment
indicators of all family members and on the disease indicators of all probands. Their
approach requires two strong assumptions. One is that the probability of being a proband
is independent of family history. The other is that either the probability of being a proband
is completely independent of disease, or the source population from which families are
drawn is extremely large. Under these assumptions they show that ascertainment can be

ignored, and that it is sufficient to condition the likelihood contribution of a family on



the disease statuses of all probands in the family. Alternatively, Bonney (1998) suggested
that ascertainment corrections can be based on subunits of a family, such as sibships, but

requires that some subunits not contain any probands.

All approaches to adjusting for ascertainment considered thus far specify the joint
distribution of disease outcomes among family members, which explicity involves asso-
cation parameters. Alternatively, the familial association of disease can be captured
through introduction of a random effect (e.g., Howing-Duistermaat, van Houwelingen and
de Winter, 2000, Commenges, Jacqmin, Letenneur and van Duijn, 1995, Stiratelli, Laird
and Ware, 1984), through which familial aggregation is expressed implicitly in the vari-
ance parameters of the random effect. Random effects models also yield biased results
if the ascertainment process is not properly adjusted for or if the assumed distribution
of the random effects is incorrect (Epstein et al., 2002; Glidden and Liang, 2002). In a
simple case-control study design, Commenges et al. (1995) proposed adjusting for ascer-
tainment by conditioning on the marginal probability of disease for the proband. If there
are multiple probands per family, Whittemore and Halpern (2003) proposed conditioning
on the disease indicators of all probands and required that at least one pair of relatives be
discordant with respect to disease. Neuhaus and Jewell (1990) assumed that the sampling
mechanism is based on the number of affected relatives and adjusted for ascertainment by
conditioning on the event that the family was sampled. The probability of ascertainment
is calculated from the assumed model; it is simply the probability of a certain number of

affected relatives.

In this paper, we take the former approach and express the familial association of



disease explicitly in a full multivariate model. We do this because the interpretation of the
measures of association as odds ratios, as obtained from our particular models, is appealing
for its simplicity and familiarity. This interpretation is not afforded by the random effects
model. Also, regression modeling of the familial association is more straightforward when
based on the fully specified joint model than on a random effects model. In the former,
the association parameters are the canonical parameters of the model, leading naturally
to regression modeling through the introduction of covariates. In the latter, regression
modeling is less direct and is implemented through careful specification of the covariance
structure. As in Tosteson et al. (1991), we treat ascertainment status as random and
jointly model the ascertainment and disease outcomes of a family. We avoid the overly
restrictive assumptions of Tosteson et al. (1991) by directly modeling the association
between ascertainment and disease at the family- and individual-level. In addition, we

appropriately condition on the ascertainment event that brought the family into the study.

In Section 2 we review the Tosteson et al. (1991) approach and present the multi-
variate model for a family’s disease and ascertainment outcomes considered in this paper.
In Section 3 we apply the proposed method of analysis to three commonly used study
designs. In Section 4, we apply our approach to a large familial aggregation study of

cancer. In Section 5 we present simulation results, and in Section 6 we conclude.

2. Joint Modeling of Disease and Ascertainment

Let y; indicate the disease status of the ith individual in a given family (i.e., y; = 1 if 4

has disease, 0 otherwise ¢ = 1,...,n), and a; the ascertainment status (i.e., a; = 1if s



is ascertained and 0 otherwise). Several members of a single family can be ascertained.
Under the assumptions of Tosteson et al. (1991) given in the Introduction, the likelihood
contribution of each family is conditioned only on the disease indicators (i.e., the y;’s) of
all ascertained members. Thus, for their approach, specification of the joint distribution
of the disease outcomes within a family is required; that of disease and ascertainment is

not required.

The assumptions made by Tosteson et al. (1991) are often not realistic. Motivated by
this concern, we propose to jointly model disease and ascertainment. An advantage of this
joint modeling is the straightforward adjustment for complex ascertainment events with-
out reliance on unrealistic assumptions. Further, this joint modeling approach also allows
us to introduce various types of heterogeneity through the introduction of covariates, such

as ethnicity and pedigree relationship.

Any multivariate binary model can be used for the joint distribution of disease and
ascertainment. Here we consider the quadratic exponential model (QEM) (Zhao and
Prentice, 1990). The QEM has been used extensively in the analysis of familial aggregation
(e.g., Betensky and Whittemore, 1996, Hudson et al., 2001, Hudson, Laird, Betensky, Keck
and Pope, 2001, Laird and Cuenco, 2003, Rabbee and Betensky, 2004 and Matthews,
Finkelstein and Betensky, 2005). It is a multivariate log-linear model with all three-
way and higher-order associations set to zero. Zhao and Prentice (1990) developed the
univariate model and Betensky and Whittemore (1996) extended it for two outcomes per
individual. Hudson et al. (2001) derived the corresponding logistic regression equations

for the multivariate case and Rabbee and Betensky (2004) derived sample size calculations.



The QEM has several attractive features. First, it is easily implemented using standard
statistical software. Second, the parameters have interpretations as conditional odds and
odds ratios. This is of particular interest in the context of familial diseases; individuals are
frequently interested in their risk of disease given their family history. Third, it models
associations of outcomes within families and within individuals. Modification of these
relationships is straightforward through the introduction of covariates, such as pedigree

relationship.

The QEM for two binary outcomes (y; and a;) for a family of size n is

n n n
P(yi, ... sYn, @1,y ,0n) & exp{zeyi Yi +Z9a¢ a; +Z¢9yai Yi @i
i=1 i=1 i=1

+Z’sz'j YiYj + Z’Yaz’j a; a; + Z”Yyaij Yi aj} (1)

i<j i<j (E]
The parameters of primary interest in assessing familial aggregation are the +,;;’s; they
capture the increase in disease odds associated with having an affected relative. The
log-odds of disease is captured by 6,;. Other parameters capture the clustering and inter-
action terms involving ascertainment. The association between disease and ascertainment
within families is captured by +y4i;, while 8,,; captures this association at the individual-
level. It is important to note that these parameter interpretations are conditional on all
other outcomes. For example, 7,;; measures familial aggregation of disease conditional on
the disease and ascertainment outcomes of all other individuals. Exchangeability among
family members implies that 6y; =0y, 00 =04, Oyai =0ya, Vyij =Yy> Yaij ="Ya a0d Vyaij =Vya
for all ¢ # 5. This assumption can be relaxed through the introduction of covariates, for
example, Vyij = Vy,0 + Vy,12ij, Where z;; is a pair-level covariate specific to pair (¢, j), such
as genetic distance. To simplify our presentation, we assume exchangeability throughout
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this paper.

The QEM admits a set of logistic regression equations, and thus standard statistical
software may be used for estimation (Hudson et al., 2001). These regression equations

are

loglt [P (y, =1 ‘ y—i’a’)] = ey +0ya a; +’szy] +'7yazaj

i#] i#j
logit[P (a; =1[a—,y)] = Oa+0uyi+ 'Yazaj + Yya Zyj, (2)
i#j i#]

! !

and y_; = (Y1,--- ,¥i-1,Y%i+1,--- ,Yn). The vectors @ and a_;

where y = (y1,... ,Yn)
are defined similarly. The robust variance estimator of Liang and Zeger (1986) is used

to adjust the variance of the resulting parameter estimates for the correlation among

relatives.

The canonical parameter, v, is the log-odds ratio conditional on family history and
ascertainment. However, interest is more likely to reside instead in the marginal associ-
ation of disease among family members from the general population, without regard for
ascertainment. Any such measure of association can be calculated from the fully specified
joint probability model. One example is the unconditional pairwise odds ratio of disease

(e*™), where

oo Plyi=1,y;=1) xP(y; =0,y, = 0) (3)
P(yi=1,4;=0) xP(y; = 0,35 = 1)

for all ¢ # j and y_;; is the vector of disease statuses of all family members excluding the



ith and jth individuals. The probabilities follow from (1), i.e.,

oy = log Z Z P(y; = 0,y; =0, Y_ij a)

A Yfij

+log {Z Z Py, =1,y; = 1,y,-j,a)}

A Y_@'j

-2 log Z Z P(yz = 1ay] = anf'ijaa’) ) (4)

A Y—'ij
where A denotes all possible values of the vector a, and Y _;; denotes all possible values
of the vector y_;;. Note that the last term is multiplied by 2 due to the assumption of

exchangeability.

Inference based on these transformed measures of association requires computation of
the Jacobian associated with each transformation in (3). Advantageously, the QEM is a
member of the exponential family of distributions. Consider the transformation from v, in
(1) to éa in (3). Let ¢ denote the vector of the original parameters (0, 04, 6ya, Vys Ya> Vya)'s
@' denote the transformed vector of parameters (6y, 04, Oya, Oar, Va; Vya)' and T’ denote the
vector of sufficient statistics,

!

r- (zyi,za,-,zyiaz-,zyiyj,zaiaj,zyiaj). g
i i i i<j i<j i#]

A -1
The Jacobian of this transformation is given by J = (g—g) = (%%) . Only the fourth
element of the parameter vector is transformed. Thus, the Jacobian is an identity matrix

except for the fourth row, which is the derivative of d,; with respect to ¢. Since the QEM

is a member of the exponential family, the fourth row of the Jacobian is

By (T |yi=1,95=1)4+E4 (T | y; =0,y =0) —2E4 (T | 5 =1,y; =0)] .



The Jacobians for the other transformations are of similar form. The variance of ¢’ is
given by

A~

Covy M —(JZTJ)? (6)

where Z is the expected information matrix of the original parameters (¢). Testing for
familial aggregation of disease, independent of ascertainment, is then performed by using
(4) and (6) to construct confidence intervals for the various measures of association that

are marginal with respect to ascertainment (e.g., o).

3. Study Designs

Likelihood-based analysis of family studies must condition on the ascertainment event
that brought the family into the study. For example, if a family is required to have at
least two affected members in order to participate in the study, each family’s contribution
to likelihood must condition on the event that there are at least two affected members
and at least one proband. Any joint model of disease and ascertainment within families
and within individuals facilitates this analysis. In our analyses, we elect to use the QEM,

specified in (1).

We consider three commonly used study designs used for family studies of disease.
The family’s ascertainment event in the first of these designs is simply the ascertainment
of at least one family member; we refer to this study design as proband sampling. There
are two different familial ascertainment events utilized in the second study design. Case
families have a minimum number of affected ascertained individuals, and control families
have a mazimum number of affected ascertained individuals. We refer to this study design

10



as case-control family sampling. The third study design requires a minimum number
of affected relatives in a family and at least one ascertained individual. We refer to this

last study design as high-risk family sampling.

3.1 Proband Sampling

Proband sampling involves recruiting individuals and then obtaining their family his-
tory of disease. As there is the possibility of multiple probands per family, the conditioning
event is the event that there is at least one proband in the family (i.e., Y a; > 1). As
an example, consider a study in which individuals are recruited from a high-risk clinic. A
family is included in the study as long as at least one of its members was recruited from
the clinic. The Tosteson et al. (1991) assumption of independence of ascertainment and
family history of disease implies that an individual enters a high-risk clinic independent
of the disease history of his/her relatives. This is suspect in the context of many diseases.

For the proposed approach, under this design, a family’s contribution to the likelihood is

Zai21).

P<y1,... s Uny Q1 e v o Gy

The logistic regression equations in (2) can be used to obtain parameter estimates; how-

ever, the expected information matrix must account for the conditional likelihood (Ap-

pendix A).

3.2 Case-Control Family Sampling

The case-control design aims to sample two types of families: one with the hereditary

form of the disease, and the other with sporadic disease. Case families potentially carry
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the hereditary form of the disease and contain at least a minimum number of affected
ascertained individuals. Control families with potentially sporadic disease contain at most
a mazimum number of affected ascertained individuals. One example of this study design
is the recruitment of individuals from high-risk clinics, with ultimate recruitment of the
family depending on the numbers of recruited individuals with and without disease. In
this setting, the Tosteson et al. (1991) assumption of independence of ascertainment and
family disease history is again suspect. It implies that a subject enters a high-risk clinic

regardless of his/her family’s disease history.

Consider case-control family sampling in which case families have at least c; affected
ascertained individuals, and control families have ¢y or fewer affected ascertained individ-

uals (0 < ¢y < ¢; < n). The likelihood contribution for a case family is

Zyiai > Cl) ; (7)

P(yla"' yYn, A1, - - . ,0np

and for a control family is

> e <o Y ai>1). (8)

P<y1)"' yYn, A1, - .. ,0np

Note that the contribution from control families must condition explicitly on the presence
of at least one ascertained individual; this is implicit in the conditioning event for case
families. The logistic regression equations in (2) can be used to obtain parameter estimates
but the variances of these estimates must account for the conditional likelihoods for each
type of family in (7) and (8). Derivation of the expected information matrix is similar
to that given in Appendix A for the proband sampling study design. Letting Ny denote

the number of control families, and N; denote the number of case families, the expected
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information matrix is given by

I:NO COV¢ [T‘ Zy,az S cO,Zai Z 1] +N1 COV¢ [T‘ Zy,(lz 2 Cli| . (9)

3.3 High-Risk Famuly Sampling

To increase the power to detect familial aggregation, the high-risk family design sam-
ples families with multiple affected members. To accomplish this, a family is required to
have at least a certain number of affected members and at least one ascertained individual.
This study design is advantageous in the case of a rare disease or if the risk of disease is
small for those with the hereditary form of the disease. One example of this study design
involves recruitment of individuals from a high-risk clinic, with the ultimate recruitment
of the family depending on there being at least two affected family members. This design
differs from the case-control family sampling design in that it does not require the affected
family members to be among those who are ascertained. Again, in high-risk family sam-
pling, the Tosteson et al. (1991) assumption of independence of ascertainment and family
history of disease is unlikely to hold given typical ascertainment through a high-risk clinic.
Appendix B shows that for this study design, under the assumptions of Tosteson et al.
(1991), ascertainment drops out of the likelihood and can be ignored. However, when
these assumptions do not hold, as they likely do not in most disease contexts, we con-
dition the full joint distribution for the family on the appropriate ascertainment events.
Letting ¢ denote the required number of affected family members (¢ < n), the family’s

contribution to the likelihood is given by

Zaizl,ZinC)-

P(yl,... s UYn, Q1, - -« 5 Qp
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Derivation of the information matrix follows that of the first study design in Appendix

A. For a set of N families, it is given by
Z =N Covg (T‘ Zai > 1,Zyi > c) .

4. Example

We now compare the four approaches to accounting for ascertainment described in the
Introduction under each of the three different sampling designs described in Section 3.
Each of these approaches requires specification of the joint distribution of disease or of
disease and ascertainment among family members. As described previously, we elect
to use the univariate and bivariate QEM, respectively. The first method is the naive
approach, which completely ignores ascertainment in the analysis. The second approach
is the first proband approach, which conditions the joint likelihood of disease outcomes on
the disease status of the first individual recruited to the study. The third approach is that
of Tosteson et al. (1991), which conditions the univariate likelihood of disease outcomes
on the disease outcomes of all ascertained individuals. The fourth approach is the one
proposed here based on specification of the joint distribution of disease and individual

ascertainment.

To study the different analytic approaches as applied to the three study designs, we
sampled from a study of 18,028 individuals recruited by the National Cancer Institute-
sponsored Cancer Genetics Network (CGN). Specifically, we applied the three sampling
designs to the population-based families from the CGN registry to obtain “pseudo-studies”

that conform to these designs. We defined the ascertainment event as a cancer diagnosis
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before age 65. We included sibships of size four only, as a crude form of age-matching.

The fictitious proband sampling study includes a total of 406 sibships with at least
one ascertained individual. We are interested in investigating whether skin cancer clusters
in these families. The data are summarized in the upper half of Table 1. To compare
the four approaches for analysis of these data, we computed d,s, the pairwise log-odds
ratio of skin cancer (see (4)). The estimates and standard errors are listed in Table 2. All
approaches, except Tosteson et al. (1991), find statistically significant familial aggregation
of skin cancer. The standard error of the Tosteson et al. (1991) approach is large due to
the fact that it conditions on more information than the others. This example illustrates
that improper adjustment for ascertainment can lead to a decrease in power to detect

familial aggregation and to a decrease in magnitude of the estimate.

[Table 1 about here.]

[Table 2 about here.]

In the fictitious case-control family study, case families are required to have at least
one affected ascertained individual (122 families) and control families must contain only
unaffected ascertained individuals (284 families). The results of the proposed method are
listed in Table 2 (the results of the other methods are the same as for the proband sampling
design). The proposed approach finds significant aggregation of skin cancer, although the
estimate is smaller than that from the proband sampling design. This is due to the fact

that under this design, more cases of disease are attributed to the ascertainment scheme.
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In the high-risk family study design, families were included if they contained at least
one affected member and at least one ascertained individual. In total, there were 133
sibships of size four that were analyzed. The distribution of skin cancer in these sibships
is given in the lower half of Table 1. Table 2 lists the results from all four analytic
approaches. The naive and first proband approaches give negative, though nonsignificant,
results. This anomaly arises from their improper treatment of ascertainment; they do not
account for the required affected family member. Because most families (82%) in the
study have only one affected member, the sampling design induces a negative disease
association without proper adjustment. The Tosteson et al. (1991) approach yields a
small and nonsignificant log-odds ratio. As with the case-control family sampling design,
the standard error of the Tosteson et al. (1991) estimate is large relative to magnitude
of the estimate. The estimate of the pairwise log-odds ratio of skin cancer based on the
proposed approach is statistically significant, agreeing with the results from the other two
studies. We note that this can be viewed as evidence of either an environmental or genetic

cause, or an interaction between the two. Sorting this out will require further study.

These comparisons highlight the necessity of adjusting for complex ascertainment
in the analysis of familial aggregation studies. In all three study designs, the proposed
approach yields estimates that are larger in magnitude and have smaller standard errors
than the Tosteson et al. (1991) approach. This suggests that despite the fact that it
involves estimation of more parameters than the Tosteson et al. (1991) approach, the
proposed approach is more powerful since it conditions on less information and does not
require unrealistic assumptions of independence. Finally, not surprisingly, we observe that

the more complex the ascertainment event, the smaller the degree of familial association

16



detected.

5. Simulation Studies

We conducted several simulation studies to compare the proposed approach with the
naive, first proband and Tosteson et al. (1991) approaches for the three study designs
considered in this paper. We considered two different parameter configurations for each
study design. The first configuration contains a moderate association between family
history of disease and ascertainment, and the second contains a strong association. The
Tosteson et al. (1991) assumption of independence is violated under each configuration.
We report simulation results for families of size four; results for families of size three
are similar. For each study design, 300 families were generated from the corresponding
conditional likelihood based on the bivariate QEM, and each simulation consists of 500
iterations. We focus our comparisons on the pairwise log-odds ratio parameter, §y; (4).

Results are listed in Table 3.

[Table 3 here.|

For the proband sampling design, the naive, first proband, and Tosteson et al. (1991)
all exhibit substantial bias in their estimates of d;,. In the case of a moderate association
between disease and ascertainment (parameter configuration 1), the estimates are 0.19,
when they should be 0.91. In the case of strong disease-ascertainment association, the
estimates are 0.40-0.48 when the true value is 1.25. It is apparent that even in this

simple design, it is essential to fully account for ascertainment when assessing familial
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aggregation.

For the case-control family study design, case families contain at least one affected
proband, and control families have no probands with disease. We generated 150 case
families from (7) and 150 control families from (8). The results are similar to those from
the proband design, but even more extreme. In particular, the naive and first proband
approaches yield a negative familial association. The Tosteson et al. (1991) estimate is

positive, though quite biased and nonsignificant.

Results are similar for the high-risk family sampling study design. Under strong
familial association, the the Tosteson et al. (1991) estimate is negative (-0.60); as in
the skin cancer example, this is induced through not properly adjusting for the design

requirement of an affected family member.

The Monte Carlo and analytic standard errors of the estimates are listed throughout
the table. These are generally close, though tere are some discrepancies. The discrepancies
are due to the fact that §,; is a transformation of the canonical parameters; any instability

in those estimates is magnified through the analytic calculations for d,,.

Lastly, we evaluated the performance of the proposed approach in comparison to the
other three approaches when the model is misspecified. We generated disease indicators
for each family from the univariate QEM. We then generated ascertainment indicators
from Bernoulli distributions with probability of ascertainment being dependent on disease
and the number of affected family members. We assumed ascertainment to be independent

among relatives conditional on the disease indicators of all family members. In particular,
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we set P(a; =1ly; =1,) y; <2) =04, P(a; =1y; =0, y; <2)=0.1, P(a; = 1ly; =

1,> y; >2)=0.8,and P(a; = 1|y; = 0,>_y; > 2) = 0.5.

For each study design we assessed the power of the different approaches to detect
familial aggregation as measured by the pairwise log-odds ratio, d5,. We used 500 simu-
lated datasets consisting of either 150 or 100 families. Results are given in Table 4. For
all three study designs, and for sample sizes of 150 and 100 families, the power of the
proposed approach far exceeds that of the other approaches. Interestingly, the power of
the Tosteson et al. (1991) approach is exceedingly low, likely due to the violation of its
assumptions by the probability model from which we simulated. In addition, it decresaes

as the complexity of the ascertainment event increases.

[Table 4 here]

6. Discussion

The simulation studies performed in this paper confirm that if ascertainment is related
to disease, then ascertainment must be fully adjusted for in any analysis in order to
avoid bias. Partial adjustment, as afforded by the Tosteson et al. (1991) approach,
is insufficient in many realistic scenarios of genetic epidemiologic studies. In fact, as
seen in both the example and the simulations, in the case of a large positive association
between ascertainment and disease, an unadjusted approach may indicate negative disease
aggregation (that is, having an affected relative decreases the risk of disease). In other
simulations (not reported here), the proposed approach is comparable in performance to
the Tosteson et al. (1991) approach when the Tosteson et al. (1991) assumptions are
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valid. Since we condition on less information, in some cases the proposed approach is
even more precise. In addition, the proposed approach appears to perform well under one
example model misspecification. The proposed approach is not well-suited for datasets
in which there are only a few families with multiple probands or only a few families with
multiple affected members. It is well-suited, however, for studies in which the mode of

ascertainment violates the the Tosteson et al. (1991) assumptions.

We assumed the QEM for the joint model of disease and ascertainment that we used
in our analyses. This model has the drawback of being irreproducible; that is, if the model
holds for a family of size n, then it necessarily does not hold for families of a different size.
Cox and Wermuth (1994) and Betensky and Whittemore (1996) identified circumstances
under which approximate reproducibility holds, and Matthews et al. (2005) proposed a
method of analysis to allow for varying family sizes in the univariate QEM. This method
could be applied to the proposed joint modeling approach for disease and ascertainment,
as well. Alternatively, any joint model for disease and ascertainment could be used as the

basis for the proposed approach.
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APPENDIX A

Calculation of the expected information matriz for the proband sampling study design

Calculation of the expected information matrix follows that of an exponential family,
except that the proposed likelihood is conditional. Letting k index families, and assuming
that the joint distribution of a family of size n is given by (1), the log-likelihood of all N

families in the observed data is

N

In = Z [9y Z Yki + Oa Z g + Oya Z YkiCOki
k=1 i i i
+ Yy Z YriYkj + Ya Z QkiGkj + VYya Z ykiakj]

1<j 1<j i1#£]

—N log Z exp (GyZyi—i-GaZai—i-@yaZyiai

Y,AM

7y Z YiYj + Ya Z ai@; + Vya Z yia])] ;

i<j i<j i#j
where Y denotes all possible values of y, and A®) denotes all possible values of a where

> a; > 1. The score equations, obtained by differentiating the above log-likelihood are

%—ZN:T _NE [T‘Z > 1
o =t ¢ i = }

Further differentiation is performed to obtain the expected information matrix, Z, which

is

T =N Covg [T‘Zaizl}. (10)
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APPENDIX B
Extension of the Tosteson et al. (1991) approach to a

high-risk family sampling study design

To adjust the Tosteson et al. (1991) approach to the high-risk family study design (Section
3.3), we condition on three quantities: the ascertainment indicators of all family members,
the disease indicators of all ascertained individuals, and the presence of at least ¢ affected

members. Thus the likelihood is

P(yr+17"' yYn (Y1, --- 5 Ypy Q1,5 - - Januzyizc)) (11)

where r is the number of probands in the family.

The likelihood in (11) can be shown to equal

P(yla"' Jynaala"' aan | Zyz ZC)
P(yla"' ’yraa].’"' aan ‘ Zyl ZC)
Pla,...,an | Y1, s Yn, 2 % =€) X P(y, ... ,un [ Do > ¢)

Z Z ala"':an|y17"'7ynvzyizc)xp(y1a"':yn‘zy'izc)

r+1

whereY 1, yi>c

The Tosteson et al. (1991) assumption that an individual’s ascertainment status is only
dependent on their disease status (and not that of family members) implies that the
distribution of ascertainment given disease is binomially distributed. Letting 7, = P(a =

lly=1)and » =P(a =1y =0), it follows that

Plai, .. an | Y1,--- ,Yn) Hlely, H (1—T ly])‘

j=r+1
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Thus, the likelihood becomes

P(yla"' y Yn ‘ Zyz ZC)
ZZ H?:r+1 (1_Tiyj7—21_yj) X P(y].J y Yn | Zy’t Z C)

Yo Y,
N———
whereY 7 | yi>c

since the terms involving only ascertained individuals cancel.

The second set of Tosteson et al. (1991) assumptions are: (i) a large source population
(i.e., 71,72 — 0), or (i7) independence between ascertainment and disease within an

individual (i.e., 1 = 7). If either holds,

Yi- o Yrs QL - ,an,Zyz-Zc)

Y1y - ayr,ZinC).

p (yr-f—l:"' »Yn

:P(yT-Ha"' y Yn

Thus, the assumptions of Tosteson et al. (1991) imply that the ascertainment indicators
in (11) can be ignored when computing the likelihood contribution of a family under this

study design.
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Table 1: Distribution of Skin Cancer and Ascertainment in CGN. Only families of size 4 are considered.

# Affected # Affected
Non-Probands Probands Total #
Study Design # Probands” 0 1 2 3 4 0 T 2 3 4 Families
L., IL. Proband! and Case-control 1 247 13 0 0 0 204 56 0 0 O 260
family sampling? 2 118 3 1 0 0 69 41 12 0 O 122
3 21 1. 000 10 9 2 1 0 22
4 2 0 000 1 0 00 1 2
IIT. High-risk family 1 52 13 0 0 0 9 56 0 0 O 65
sampling? 2 51 3 1 0 O 2 41 12 0 O 59
3 1 1 0 0 0 0 9 2 10 12
4 1 0 0 00 0 0 0 0 1 1

* Probands have a cancer diagnosis before age 65.

! Families have at least one proband. ‘ ‘
Case families have at least one proband with skin cancer;

control families have no probands with skin cancer. ) .
3 Families have at least one proband, and at least one member with skin cancer.



Table 2: Analysis of Skin Cancer in the CGN where Probands have a Cancer Diagnosis
Before Age 65

Study Design # Families Approach 5t (se)
I. Proband sampling' 406 Naive 1.91 (0.08)
First Proband 2.00 (0.13)
Tosteson 1.64 (0.97)
Proposed 2.67 (0.33)
I1. Case-control family sampling? 406 Proposed 2.12 (0.35)
I11. High-risk family sampling® 133 Naive -1.35 (1.34)
First Proband -1.50 (0.82)
Tosteson 0.09 (3.12)
Proposed 1.68 (0.75)

T 6y is the pairwise log-odds ratio of skin cancer.

L All families have at least one proband.

2 (Case families have one proband with skin cancer;
control families have no probands with skin cancer.

3 All families have at least one proband and at least one member
with skin cancer.
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Table 3: Comparison of Ascertainment Adjustment Approaches with Respect to Estimation of the Pairwise EdOdds Ratio

(0ar). Each simulated dataset consists of 300 families of size 4.

Estimate (se)

Study Design Naive FP Tosteson Proposed

I Proband sampling" 0.19 (0.27; 0.24) 0.19 (0.27; 0.25)  0.19 (0.30; 0.28) 0.88 (0.26; 0.26)

I. Proband sampling? 0.46 (0.28; 0.21)  0.48 (0.29; 0.19)  0.40 (0.35; 0.25) 1.22 (0.26; 0.32)

I1. Case-control family sampling® -0.51 (0.18; 0.26) -0.44 (0.20; 0.29) 0.18 (0.28; 0.37)  0.88 (0.26; 0.27)

II. Case-control family sampling? -0.30 (0.17; 0.22) -0.17 (0.19; 0.24) 0.33 (0.23; 0.30) 1.09 (0.23; 0.29)

II1. High-risk family sampling® -0.60 (0.09; 0.34) -0.63 (0.10; 0.37) -0.60 (0.09; 0.34) 1.24 (0.21; 0.17)
)

I11. High-risk family sampling® -0.61 (0.10; 0.34) -0.75 (0.10; 0.49)

-0.60 (0.10; 0.34)

1.61 (0.21; 0.24

f First value is Monte Carlo standard error; second is the square root of the average analytic variance.

19, = —2.5,0, = —1.0,0,, = 0.2,7, = 0.2,7, = 0.1, Ja = 0.1, 65y = 0.91

29, =—35,0, = —1.0,0,, = 0.2,7, = 0.2,7, = 0.1, 74 = 0.7, 0y = 1.25
39, =—3.0,0, = —1.0,0,, = 0.2,7, = 0.2,7, = 0.1,7,4 = 0.25, 53, = 0.95
49, = —3.5,0, = —2.0,0,, = 0.2,7, = 0.2,7, = 0.1, 7,4 = 0.75, 6y = 1.18
50, =—2.0,0, = —1.0,0,, = 0.4,7, = 0.5,7, = 0.1, 7,0 = 0.1, 8y = 1.27

66, = —3.0,0, = —2.0,0,, = 0.4, 7, = 0.5,7, = 0.1,7,q = 0.75, 5y = 1.63



Table 4: Comparison of Power of 5;'\,1 under Model Misspecification

Design N Method Power(%)
I. Proband sampling! 150 Naive 33.8
First Proband 35.2

Tosteson 16.2

Proposed 83.2

100 Naive 27.6

First Proband 27.5

Tosteson 124

Proposed 69.7

I1. Case-control family 75 cases Naive 20.8
sampling? 75 controls First Proband 21.6
Tosteson 14

Proposed 94.2

50 cases Naive 15.6

50 controls First Proband 16.2

Tosteson 3.0

Proposed 65.2

ITI. High-risk family 150 Naive 0.0
sampling® First Proband 0.0
Tosteson 0.0

Proposed 95.0

100 Naive 0.0

First Proband 0.0

Tosteson 0.0

Proposed 84.0

T §ar is the pariwise log-odds ratio of disease.
tt Monte Carlo estimate of the standard error.

1 5. = 0.33.
2 5y = 0.27.
3 84 = 0.74.
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